Performance evaluation of score level fusion in multimodal biometric systems
نویسندگان
چکیده
In a multimodal biometric system, the effective fusion method is necessary for combining information from various single modality systems. In this paper the performance of sum rule-based score level fusion and support vector machines (SVM)-based score level fusion are examined. Three biometric characteristics are considered in this study: fingerprint, face, and finger vein. We also proposed a new robust normalization scheme (Reduction of High-scores Effect normalization) which is derived from min–max normalization scheme. Experiments on four different multimodal databases suggest that integrating the proposed scheme in sum rule-based fusion and SVM-based fusion leads to consistently high accuracy. The performance of simple sum rule-based fusion preceded by our normalization scheme is comparable to another approach, likelihood ratio-based fusion [8] (Nandakumar et al., 2008), which is based on the estimation of matching scores densities. Comparison between experimental results on sum rule-based fusion and SVM-based fusion reveals that the latter could attain better performance than the former, provided that the kernel and its parameters have been carefully selected. & 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Authentication Using Multimodal Biometric Features
Multimodal biometric systems is the consolidated multiple biometric sources, which enable the recognition performance better than the single biometric modality systems. The information fusion in a multimodal system can be performed at various levels like data level fusion, feature level fusion, match score level fusion and decision level fusion. In this paper, we have studied the performance of...
متن کاملScore level Fusion based Multimodal Biometric Identification
Feature level based monomodal biometric systems perform person recognition based on a multiple sources of biometric information and are affected by problems like integration of evidence obtained from multiple cues and normalization of features codes since they are heterogeneous, in addition of monomodal biometric systems problems like noisy sensor data, non-universality and lack of individualit...
متن کاملAn Efficient Boosting Approach for Score Level Fusion of Face and Palmprint Biometrics in Human Recognition
Biometrics based personal identification is regarded as an effective method for automatically recognizing a person’s identity with confidence. A multimodal biometric system consolidates the evidence presented by multiple biometric sources and typically better recognition performance compare to systems based on a single biometric modality. This paper proposes a novel multipartite algorithm for s...
متن کاملFeature Level Fusion in Biometric Systems
Multimodal biometric systems utilize the evidence presented by multiple biometric sources (e.g., face and fingerprint, multiple fingers of a user, multiple impressions of a single finger, etc.) in order to determine or verify the identity of an individual. Information from multiple sources can be consolidated in three distinct levels [1]: (i) feature extraction level; (ii) match score level; an...
متن کاملDealing with sensor interoperability in multi-biometrics: The UPM experience at the Biosecure Multimodal Evaluation 2007
Multimodal biometric systems allow to overcome some of the problems presented in unimodal systems, such as non-universality, lack of distinctiveness of the unimodal trait, noise in the acquired data, etc. Integration at the matching score level is the most common approach used due to the ease in combining the scores generated by different unimodal systems. Unfortunately, scores usually lie in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 43 شماره
صفحات -
تاریخ انتشار 2010